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Abstract

Green'’s functions are derived for the plane elastostatics problem of a dislocation
in a bimaterial strip. Using these fundamental solutions as kernels, various problems
involving cracks in a bimaterial strip are analyzed using singular integral equations. For
each problem considered, stress intensity factors are calculated for several combinations
of the parameters which describe loading, geometry and material mismatch.

1 Introduction

The mechanical behavior of bimaterial interfaces in composite materials is carreatly a topic
of considerable interest to the applied mechanics oommunity.. Many analytical, numerical
and experimental investigations have been conducted recently to gain a better understand-
ing of how these interfaces affect bulk composite properties such as strength, stifiness and
toughness. The mechanisms of cracking or debonding along bimaterial interfaces are of
particular interest in brittle composites since it has been established experimentally and
through micromechanical models that certain desired properties can only be achieved in
such materials if the cracks which initiate in the matrix are deflected by the fibers along the
fiber-matrix interface [1]. It is clear that micromechanical analyses will continue to play an
important role in analyzing and designing brittle composites to ensure this desired failure




sequence. Moreover, experimental programs are necessary to measure the fracture tough-
ness of the fiber-matrix interface because the conditions required for the desired behavior
involve the relative toughness between the fiber and the interface.

Micromechanical models which involve relatively simple geometries such as cracks in
infinite and semi-infinite plane bodies have been handled using distributed dislocations and
singular integral equations [2]. For complicated finite geometries, on the other hand, the
finite element method has gained popularity [3,4]. The singular integral equation method
has two advantages. First, it leads to accurate results for stress intensity factors. Second,
once the Green’s functions are derived and the equations are set up, parameter studies can
be performed by simply varying the dimensionless parameters which describe the loading,
crack length and geometry. Unfortunately, if the geometry of the problem is complicated,
the method is not feasible because it is very difficult to derive the kernels. The real advantage
of the finite element method is its ability to model complicated geometries. If proper care
is taken, the method also produces accurate results. Parameter studies, on the other hand,
are time consuming and relatively cumbersome.

This paper addresses a class of problems whick involve cracks in bonded strips. The
motivation of th:.s work came from a desire to develop a computer program which could
be used to calculate stress intensity factors and energy release rates for bimatenal fracture
specimens being developed at CW.R.U., and model the geometry of the so-called Santa
Barbara mixed-mode specimen shown in Figure 1a. The latter “T'-crack” configuration was
developed by Charalambides et al. [3,4] at the University of California at Santa Barbara to
measure the fracture resistance of bimaterial interfaces. To interpret experimental results
and to guide the design of the specimen, they developed a finite element approach to charac-
terize trends in stress intensity factors, energy release rates and center point displacements
with specimen dimensions, elastic properties and crack length. As discussed in [3,4], the
stress intensity factors and energy release rate for the crack growing along the interface
exhibit steady state behavior as a result of the constant moment within the inner load-
ing points. The shortest crack for which results were calculated in [3,4] is approximately
a/l = 0.0938 (or a/hy = 0.3127). The results showed that this crack length is already



at steady state. One of the questions left unanswered is: how long does the crack have
to grow along the interface before it reaches steady state? To answer this question the
problem is modeled in this paper using the singular integral equation technique. Results
will be presented for relatively short crack lengths as well as for the case 3 = 0, ¢ < A2
(Fig.1c, Fig.1d, Fig.1e). It should be noted that at the end of this work the authors learned
that Charalambides has recently obtained results for both the transient region and for the
three-point loading configuration.

In the next section Green’s functions are derived for edge dislocations in a bimaterial
strip. These fundamental solutions can be used in turn to set up the integral equations
for all the configurations shown in Figure 1. It should be noted that this class of problems
has been analyzed by Lu [5] and Lu and Erdogan [6] using Fourier transforms. In [5,6]
the problems were reduced to singular integral equations without the use of disiocations as
fandamental solutions. Dislocation densities, however, were defined eventually to set up the
integral equations. In this paper the dislocations are introduced as fundamental solutions.
This will enable us, in the future, to solve problems which involve non-symmetric loading
and/or inclined cracks. In the third section the dislocation solutions are used to set up
the integral equations for several configurations and loadings. The last section presents

numerical results and comparisons with existing solutions.

2 Fundamental Solutions and Loading Conditions

Assume that two dissimilar elastic strips are bonded along the z axis. The upper layer
(y > 0) islabeled by “1” and the lower layer (y < 0) is labeled by “2”. The Green’s functions
for an edge dislocation in the bimaterial strip are derived by superposing the solutions for
(1) a dislocation near the interface of two bonded half-planes; and (2) a bimaterial strip
loaded with boundary tractions which cancel out those induced by problem (1).

The solution to problem (1) is well known. The stresses and displacements, which will
be denoted by superscript “(1)”, can be expressed conveniently in terms of Muskhelishvili’s




complex potentials as

in which the subscript ¢ (i = 1,2) denotes “in region 3”
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half plane. Moreover, z is the complex variable z + iy, the prime denotes differentiation

with respect to z, an overbar denotes conjugation, 4 is the shear modulus, and « is defined

in terms of Poisson’s ratio v as x = 3 — 4w for plane strain, and & = (3 - »)/(1 + ») for

plane stress. The complex potentials for a dislocation located at z = Zg + iyg are given by
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where b = b; + iby with b, and b, being the z and y components of the Burgers vector.
We next compute the stresses due to a dislocation by = by, + by, at the interface (z0 — 0)
and due to a dislocation b; = by, located at z = 0, y = ( < 0. The first dislocation
corresponds to the Green’s function for the interface crack, while the second corresponds
to the fandamental solution for the vertical crack. For zg — 0, the stresses become

. )
o) +ie) = [2 2 - i8OS
(6)

for y =0,
. c . ¢ 22y
of) +iol) = Z(5 -8k - 1+ A=

]ls Py )]_1
Y]



fory > 0, and

2
o) +iclh) = g(% +if5)h - g(l - ﬂ)[-z%-
( y’ rlz)p;la

ol = ZRiD(5, 2] ®)
with

o)

D(y,z)=(1—ﬂ)2 -(3-28% -i1-28)5-1-5)
©

for y < 0, where §(z) is the Dirac delta function. Here, some care must be taken during
performing the limit [8]. Meanwhile, for dislocation b4, it can be shown that
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The solution to problem (2) is obtained by using Fourier transformation techniques.
Without loss of generality, consider a bimaterial strip loaded with surface tractions which
are symmetric about the y-axis. The Fourier transform of displacement is as follows:

Ui(¢,y) = /:D 4i(Z,y)sin{zdz

Vile,y) = /:’ vi(2,y) cos €z dz

amn
The general solutions for U; and V; are [9]:
Ui(€,9) = (Aaha + Aay)e™ + (Aisha + Auy)e™?
Vil6,9) = [Anha + (mi/€ + y)An]e ™ + [~ Ashy
+(m:/€ = y)Au]e®?
(18)

with the unknown coefficients determined by continuity and boundary conditions along the
interface:
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—[6R2(Az1 — Azz) + (1 — 2u) Amg]et™ + [€ha(Ags — Aas)

—(1 - ) Aule=h = £,(¢)
(19)

where the first four equations represent the continuity of u, v, oy, and o,y along the
interface, respectively; the last four equations specify the boundary conditions at y = A,
and y = ~hz. The functions f;(£) and f2(£) are related to the Fourier transforms of the
loadings on the top surface of the upper strip, while f3(¢) and fi(£) are related to the
Fourier transforms of the loadings on the bottom surface of the lower strip. To eliminate
the unwanted surface traction along the boundaries due to each dislocation, for example b,
in problem (1), fanctions f1(£), f2(€), fs(€) and f4(€) are set to be

A(§) = -5-‘1‘—1 /:o o{D(z, 1) coséz dz

f2(6) = -5,1‘—1 [ 0Q(@, m)singzaz
(€)= -2—‘1‘2' /omﬂ,(,},)(z, ~hg)coszdz

(€)= —5}‘; ow o()(z, —hg)sin fz dz.
(20)

It can be shown that equations (19) are also applicable to the anti-symmetric problem. The
fi(€)’s have been evaluated for each case and are given in the Appendix.

After the A;;’s are solved, the stress components due to problem (2), which are denoted
by superscripts “(2)”, are readily obtained by inverse Fourier transformation. For the
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symmetric problem, e. g. for dislocation b,

o(z,0) = 3‘%1’—' /:p [€ha(Ars — An) — (1 — 20 ) (A1 + A1s)]

x gin {z df

o()(z,0) = @ /:7 [—€ha(An + Aus) + 2(1 - »1)(Au — Auz)]

x cos £z df
(21)
and
oD(ar9) = 22 [“{le(Anha + Amy) - DrAmle
+E(Azsha + Azey) + 20 Az)etV} cos iz dE
(22)

where y < 0. For the anti-symmetric p::oblﬁn, e. g. for dislocation b, the above relationship
is still valid if sin{z is replaced by cos{z and cos {z is replaced by —sin {z.

For convenience, in subsequent dmcnmona introduce the following definitions for the
stresses produced by problem (2):

o@)(z,0) + ic()(z,0) = Ga(2)b1a + Ga()bry + Ga(%;{)b2e

| o@(z,y) = Hi(y; z)hs + Ha(y; 2)b1y + Hs(y; ¢, 2)b2s.
(23)
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We wish to point out that the fandamental solutions derived above can be used to solve
a large class of problems. The purpose of this paper is to present the methodology. Thus
we will consider only three types of loadings. These include three and four point bending
(Fig.1a), constant pressure along the crack surfaces, and a temperature change of the com-
posite strip (Fig.1d). Consider first a perfectly bonded bimaterial beam subjected to four-
point bending. The stresses in the strip due to this loading condition can be calculated using
composite beam theory if the strip is long enough. However, since we may be interested, in
the futare, in analyzing relatively short beams, an elasticity solution is obtained in the same
manper as for problem (2) of the dislocation solution. The applied loads are represeated
by Dirac delta fanctions at the load points. That is oy, (z, k1) = —p[b(z — d) + §(z + d)}/2
and oy(z,—ha) = —p[b(z — ¢) + 5(z + ¢)]/2. The functions f;, fa, fs and f; for this
case are listed in the Appendix. To evaluate the stresses which arise from this loading, it
may seem natural to proceed in the same exact manner as for the dislocation solutions.
However, tremendous care must be taken when evalnating the stresses along the interface
and along the line z = 0 due to this loading condition, because the integrals in the inverse
transformations converge very slowly. To improve the convergence the integrands are first
evaluated at £ = co. The dominant portion of these limits, which correspond to half-space
solutions, are subtracted from and added to the integrands, and the added integrals are
evaluated in closed form. The same procedure is also applied to the dislocation 5; when it
is close to the bottom surface. For brevity the details of the procedure are not given here,
but can be recovered in similar analyses presented in [10,11].

Denote the stresses produced by the four point bending as

93y(2,0) + ioyy(z,0) = pQ()/hs,

04s(0,y) = pR(y)/ha (24)

respectively, where p is the force per unit thickness. These will be used in section 3 to set
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up the integral equations.

The next loading condition consists of a uniform change of temperature AT of the
composite strip. The thermal stresses in the strip are calculated using beam theory [12].
In particular, the stress in layer 2 along the line z = 0 is given in terms of the thermal
expausion coefficients «; and a3 by

Oae = (a3 — 1) ATE}(1 + Lyja+ 5 "2) (25)

with

3 Integral Equations

Several problem configurations are depicted in Figure 1. The coordinate system is chosen
such that the z axis lies along the interface of the bimaterial strip, and the y axis along the
vertical crack so that layer 1 is at y > 0 and layer 2 is at y < 0. The integral equations for
the four point bending problem shown in Fig.1a are set up first. The stresses along the lines
y=0and z = 0 (y < 0) are given by the summation of contributions from problem (1),
problem (2) and the four point bend load (24). Replacing the dislocations by a distribution
of dislocations enables us to satisfy the traction boundary conditions along the crack. This
procedure leads to the following set of coupled singular integral equations:

[ o5 wo-iommie+ [ e wimit)

1 1
+ / Ks(t, t0)B1(to) dto + / Ks(2,t0)Bs(t) dto = pr(t)
-1 -1

/.11 fz..(tt':,) dto + /_ 11 K4(t,t0) By(to) dto + /_ 11 Ki(t,to)Bi(t0) dto
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+ [ Kaft,t0/Bslto)dto = )
(26)

together with the conjugate of the first equation in (26) where the dislocation densities are
given by B}(t) = Bl,(at) + iBlv(at) and Bg(t) = Bg.(hz(t - 1)/2) with

Bln(z) "%_[ (370+) - u(zso )]

Buy(z) = - S22 L 1o(z, 0%) = o(,07)

Bau(y) = -%’,'3—[ u(0*,3) - w(0™, )] (27)

and

Ki(t, o) = 521G (a(t - ta)) — iGa(alt - to))

Ey(t, o) = 351G (a(t - t0)) + iGa(a(t - to))

Ks(t,to) = %[E(at, hz(t‘;— 1)) + %G;(at; hz(toz— 1))]

hz(t 1) hg(to 1)) 1!'(1-{-(1)

Kuft o) = 1A Ca-P

x Hs (hz(t 1) hz(to 1) 0)]

Kty to) = -%‘%{D(y, —20) + E{Ha(y; ~20) ~ iHa(ys —2)]}

Ks(t to) Ksit tos

14



n(t) = -xQ(at)

m) = 1 SertCo ), (29)

If the vertical crack is not present, B; is set equal zero and only the first equation of (26)
is enforced. If the interface crack is not present, on the other hand, the first of equations (26)
is not enforced and B, is set equal to zero in the second equation. For the edge crack whose
length ¢ < k3, the dislocation density is instead represented as Bi(t) = Ba(c(t — 1)/2),
and in the expression of the kernel K give'n by (28) k3 needs to be replaced by ¢. Other
loading conditions can be treated by modifying functions p; and ps.

The integral equations can be solved numerically by representing each dislocation density
in terms of a regular function and a characteristic function with the proper singularities at

the end points. Thus, let

l _ () __ $al®)
A== :)121 + -7 Bl = topvtTe

(29)

where $1(t) and ¢5(t) are regular continnous fanctions which are approximated as piecewise
quadratic [13], and
1. 1. 1-8
‘7-—5""'(, C—z—rIOGﬁ—B-.
(30)
The exponent ] is taken as 0.5 for the T-crack (Fig.1a) and for an edge crack whose tip does

not touch the interface (Fig.1c, Fig.1d). If the tip of the edge crack touches the interface,
A is determined by the following characteristic equation [14,15]:

15



co8 T —

2(8 - a) a+ g2
Y (1—,\)2_1_ﬂz=o. (31)

Using the method developed by Miller and Keer [13], integral equations (26) caa be reduced
to a set of algebraic equations.
The additional conditions to be satisfied are as follows. For the T-crack

/_ 11 Byy(t)dt =0 (32)
$2(£1) =0 (33)
[ Buao. (34)

Equation (32) is the closure condition for the horizontal crack, (33) represents the condition
that the stress singularities at the tips of the vertical notch are less than square root, and (34)
implies the bluntness at z = 0. As will be discussed in the next section, the representation
of the dislocation density for the T-crack is not rigorous. However, the error introduced is
acceptable for the configurations considered in this paper.

For a single intexface crack

[ Bia=o, (35)

and for a single edge crack

¢2(-1) =0 (36)
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i ’1 Bu(t)dt £0. (37)

4 Numerical Results and Stress Intensity Factor Analysis

The stress intensity factor K of the interface crack (Fig.1b) and the T-crack (Fig.1a) are
defined by [16]

K = lim{y/2n(z - a)(z - o) *[opy(2,0) + ieny(z,0)} (33)

It can be shown that in terms of ¢;(t), which is determined by equation (26) with (28) and
(29), this complex stress intensity factor can be expressed as

K = 2 /fxal(1 - 72)(20) 0D

(39)

for the four point bending load. For an edge crack whose tip does not touch the interface

= ’_.(IE}.’)[‘, 2"'("2 <+ y—- C)U.‘(o, ’)], (40)

and similarly in terms of ¢a(t)

2 Q-5
= hz (1+ ) /2¢2(1)
(41)

for the four point bending. For an edge crack whose tip touches the interface

17



K= v]i_r_’lb[\/Z—‘x‘y'\a' (0, 9)], (42)
and

(1-8%
K= ,f T a) Va2 6a(0).

(43)

For the other loading cases, the factor p/hs in (39) (41) and (43) is replaced correspondingly.
The energy release rate of the interface cracks in the considered plane strain problems is

given by [17]

G =[(1 - »)/p1 + (1 ~ v3)/ 3] KK /4 cosh?(we).
(44)

In order to check the lengthy algebra and the numerical scheme, two confignrations
which have previously been analyzed are considered first: a pressurized crack between
two bonded dissimilar layers and a pressurized vertical edge crack in the bottom layer
of a composite beam. Fig.2 shows the dimensionless stress intensity factors K/sov/a =
lim,_a[(s — 2)'=7(a + z)7(0yy + i0sy)]/70a versus 0.1 < hy/2a < 4 for the interface crack
with hg/h; = 3, 11 = w = 0.3, p1/p2 = 3 and p1/ps = 10, respectively. The results are
plotted in terms of this definition of stress intensity factor for comparison with reference
[18]. For h;/2a > 0.5 the results agree with those presented in [18] (no results were given
there for h;/2a < 0.5). As expected, when the crack becomes shorter, the stress intensity
factor converges to 1+ 2ie which is the solution for an interface crack between two bonded
half-spaces.

For the edge crack problem a homogeneous beam and four ceramic composite strips are
considered. They are: strip 1 Ti/Al20s with » = 0.322, 1 = 0.207 and pz/p; = 4.129,
strip 2 Ni/MgO with 1y = 0.314, »2 = 0.175 and p2/p1 = 1.588, strip 3 MgO/Ni and strip 4
Al20s/Ti [16]. Fig.3 and Fig.4 show the dimensionless stress intensity factors as fanctions
of crack length and relative thickness of the layers for the four point bending case considered
in [3,4] where d = 5ha, ¢ = 81k, and I = 3}h,. The quantity oimay is the axial stress at the

18



lower surface of the composite beam calculated using composite beam theory. It is given by

_ MmH;
Omax = T + {z) (45)
with

pa(l — 1)
= 6 = hy /Ry,

B1(1 - )’ 1/kz

h 2
Hy =3y +hy - Hy, Hy = 2(m +6)(m+26+6),

1 1 3
L= hd + (B - --)2 I = b3+ ha(Hp - _21)’.

(46)

where M is the bending moment; for the four point bending shown in Fig.1 M =pl/2. It is
observed that as the crack tip approaches the interface, tilc stress intensity factor increases
drastically if the edge crack is in the stiffer layer. In the limit, the stress intensity factor
approaches infinity for this case, since it can be shown that as the crack tip hits the interface
the stress singularity is greater than square root. When the crack is in the softer layer, the
stress intensity factor goes to zero as the tip approaches the interface, since the singularity
in this case is less than square root. When the crack is very short, namely c/hy — 0, the
dimensionless stress intensity factor approaches 1.586, which corresponds to the solution
of an edge crack in a half-space under uniform tension. When the thickness of the upper
layer becomes very thin, the stress intensity factors for the bimaterial strips approach those
for a homogeneous beam. It is interesting to note that for these values of mismatch, the
dimensionless stress intensity factors are insensitive to c/h; for ¢/hs < 0.5 and insensitive to
ky/hg for hy/ha > 1. Results were also obtained for three point bending. For this geometry
the nondimensional results were found to be almost exactly the same as for the four point
bending.

Fig.5 shows the stress intensity factors for the edge crack whose tip touches the interface.
In this case the singularity depends on the elastic mismatch of the two layers and factor A

19



is calculated from (31). For the combination considered here 1 = 1 = 0.3, pg/u; = 3 and
p2/p1 = 1/3, and singularities A = 0.6205 and X = 0.4003, respectively. Notice that, since
the stress singularities are different, it is meaningless to directly compare the valaes of the
dimensionless stress intensity factors given in Fig.4 and Fig.5. It should be noted that these
results do not compare at all with those in [5,6].

Suppose that a bimaterial beam is subjected to a concentrated force p along its neutral
axis as shown in Fig.1f where H; and Hy are given by (46). The longitudial stress across
the lower layer is

D-__P
M WY ;) (47)

where T = p1(1 — »2)/[p2(1 — #1)]. If the beam is subjected to the remote bending, based

on the composgite beam theory, the stress on the lower layer is
(48)

where omy; and Hy are given in (45) and (46). Notice that two Dundurs parameters a and
B can cover the elastic moduli dependence of a two-dimensional bimaterial system [19]. In
Table 1 and Table 2 the stress intensity factors are given in terms of a and J for an edge
crack with ¢/kz = 0.5 under the above two loading systems. Table 3 shows the singularity A
of the edge crack whose tip touches the interface. The corresponding stress intensity factors
are given fof this class of edge cracks. '

Fig.6 and Fig.7 show the stress intensity factors of the edge cracks for the thermal loading
case. The sign of the stress intensity factor changes when the crack length is approximately
equal to 0.6h; as a result of bending. If additional loads are superimposed, these results
suggest that crack growth can either be accelerated when (@3 — a1 )AT < 0 or slowed down
when (a2 — @1 )AT > 0 by the introduction of a temperature change.

20



The last example considers the T-crack, which is referred to as the Santa Barbara speci-
men, shown in Figure 1a where d = 5kg, e = 8%1&2 andl = 3%1&. Results were calculated for
crack lengths which. are shorter than those preseated in [3,4]. Figure 8-14 show the dimen-
sionless stress intensity factors Khi¢h3/2/pl | energy release rates G and the phase angles,
defined as the argument of Kh*, for strips with 1 = vo = 0.3 and g1 /p2 = 1, p1/p2 = 2.5,
p1/pa = 5, p1/pa = 10, respectively. The results obtained in [3,4] for a/h; > 0.5 are
superposed on the figures. The agreement is observed to be quite good. It is obeerved that
steady state begins at crack lengths equal to hz. Results for a/hg less than 0.1 were not
calculated because we believe that accurate solutions cannot be obtained for these cases
using the present formulation, since the integral equations are coupled. To obtain accurate
results for small value of a/hs one would need to formulate the problem in terms of a single
| integral equation whose kernel includes an analytic solution for the interaction of the two
cracks.

It should be mentioned that for crack lengths greater than 1.5k; convergeat results were
not obtained as a result of using a distribution of dislocations density whick is continnous
at z = 0, y = 0. Because the vertical crack intersects the interface crack, the slope of
the horizontal crack is discontinucus at (0,0). The numerical scheme implicitly assumes
that the siope there is zero. We believe it is this error which leads to poor results for long
crack lengths, for which the slope at (0,0) is definitely not zero. This problem is being
addressed by the authors at the present time by introducing a discontinuous distribution of
dislocations.

5 Conclusions

An analytical formulation has been presented which can be used to solve a class of plane
clastostatic problems involving cracked bimaterial beams. Results were calculated only for a
few geometric configurations and symmetric loadings. However, since the analysis relies on
fundamental solutions for dislocations in bonded strips, other configurations such as inclined
or curved cracks and/or non-symmetric loadings can be treated with minor modifications.
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For the T-crack, when the interface crack is relatively short, the results obtained using the
singular integral equation approach compare very well with those obtained in [3,4] using
the finite element method. However, for such configurations, which involve discontinuous
dislocation densities at the intersection of the two cracks, poor results were obtained for
relatively long interface cracks. This problem can be treated by modifying the numerical
scheme to handle discontinuous dislocation densities.
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Appendix

For dislocation b, lying at interface (0,0)

hle) = fi'-lﬂ +(1+ B)hagleme

7:) = ~ 21 - @+ Phaglee
() = ~ 22218~ (1 = Phatlee

Cb,

) =- -0~ B)hagle=a¢.

For dislocation b, lying at interface (0, 0)

h@) = [1 + (1 + B)hy€le e
fa(e) = -2 C”' 8- 1+ B)gle™e

C bv —-haé
fs(8) = [1 + (1~ B)hatle

146 = -%!Iﬂ + (1= BhatleH.

For dislocation b, lying at (0,() with ( <0

(A1)

2



hH) = f::

Q)€ + (b1 + )Pl ~K%

(1+B)(h1 = ()¢ — 28¢Ele M =X

1) = = (1 = b + Qg

Cb,

T [BQ +a) = (a — A)(1 - B)(h2 + ()€

~2(a — A)(1 - Aha(ETle-Pr=0X

7€) = - S22 011 - (b + oo

ch, .
m[( +8%) = (a = A1 - B)(ha - )

~2(a ~ B)(1 = B)ChatHe~(ha—C).
(A.3)

For four-point bending

he) = —;ﬁ; cos £d, f2(8) =0

f5(6) = -;5; cos €, f1(e) =0.

(A.4)

26



Table 1 Stress intensity factors for edge crack under tension along neutral axis (c/hz =
0.5).
B K/oD /xc[2 |

@

hi/ha | B 08! 06 | -04 | -02 0.0 0.2 0.4 0.6 0.8
-0.4 | 3.891 | 3.786
-0.3 | 3.892 | 3.788 | 3.681 | 3.571
-0.2 | 3.893 | 3.791 | 3.685 | 3.576 | 3.463 | 3.345
-0.1 | 3.894 | 3.793 | 3.688 | 3.581 | 3.469 | 3.353 | 3.231 | 3.102
0.1 | 0.0 | 3.895| 3.795 | 3.692 | 3.585 | 3.474 | 3.360 | 3.240 | 3.112 | 2.967

0.1 3.605 | 3.589 | 3.480 | 3.366 | 3.248 | 3.122 | 2.979
0.2 3.485 | 3.373 | 3.255 | 3.131 | 2.991
0.3 3.262 | 3.139 | 3.001
0.4 3011
II K| /xc/2 "
[+4
hi/ha | B 08| 06| -04| 02| 00| 02| 04| 06 0S8
-0.4 | 2.782 | 2.435

-0.3 | 2.828 | 2.481 | 2.284 | 2.146
-0.2 | 2.866 | 2.520 | 2.322 | 2.181 | 2.066 | 1.964
-0.1 { 2.900 | 2.554 { 2.354 | 2.211 | 2.094 | 1.989 | 1.888 | 1.773
1 0.0 | 2.929 | 2.584 | 2.383 | 2.237 | 2.117 | 2.010 | 1.903 | 1.786 | 1.636

0.1 2.408 | 2.260 | 2.138 | 2.027 | 1.917 | 1.794 | 1.637
0.2 2.155 | 2.041 | 1.927 | 1.800 | 1.636
0.3 1.933 | 1.801 | 1.629
ﬂ 0.4 1618
0l Ko™ /xc]2 |

a
I[hl/ha g | -08] 06| -04] -02] 00] 02] 04| 06| 08
0.4 | 2117 | 1.894
0.3 | 2137 | 1.910 | 1.774 | 1.678
0.2 | 2.149 | 1.920 | 1.783 | 1.685 | 1.610 | 1.549
-0.1 | 2.157 | 1.924 | 1.786 | 1.687 | 1.611 | 1.549 | 1.498 | 1.453
10 | 0.0 | 2.158 | 1.924 | 1.784 | 1.684 | 1.608 | 1.545 | 1.493 | 1.449 | 1.410

0.1 1.778 | 1.877 | 1.600 | 1.537 | 1.485 | 1.440 | 1.401
0.2 1.588 | 1.525 | 1.472 | 1.427 | 1.388
ﬂ 0.3 1.454 | 1.409 | 1.370
0.4 1.346
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Table 2 Stress intensity factors for edge crack under pure bending (c/hz = 0.5).

r

K/0max\/7c/2

|

hy/ha

a

-0.8

-0.8

-0.4

-0.2

0.0

0.2

04

0.6

0.8

0.1

-04
0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

2.074
2.074
2.075
2.076
2.077

2.032
2.034
2.036
2.087
2.038

1.996
1.998
2.000
2.002
2.004

1.960
1.964
1.967
1.969
1.972

1.534
1.938
1.942
1.945
1.949

1.913
1.918
1.922
1.927
1.931

1.910
1.916
1.921
1.926
1.931

1.924
1.931
1.938
1.944
1.950

1.982
1.991
1.999
2.008
2.015

K/ Omax/7c/2

h1/h,

a

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

1.594
1.625
1.662
1.675
1.695

1.509
1.543
1.572
1.597
1.619

1.510
1.539
1.564
1.585
1.606

1.487
1.514
1.538
1.559
1.577

1.488
1.511
1.530
1.547
1.561

1.457
1477
1.495
1.509
1.521

1.434
1.448
1.460
1.468
1.474

1.373
1.383
1.391
1.396
1.397

1.283
1.285
1.284
1.278
1.269

K/Omax/7c/2

ha/ha

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

10

-0.4
0.3
-0.2
-0.1
0.0
0.1

0.3
0.4

1.945
1.963
1.975
1.982
1.984

1T
1.786
1.796
1.800
1.800

1.669
1.677
1.680
1.679
1.673

1.583
1.590
1.592
1.589
1.582

1.521
1.522
1.519
1.512
1.500

1.464
1.465
1.461
1.454
1.41

1.417
1.413
1.406
1.392
1.375

1.375
1371
1.363
1.350
1.333

1.334
1.326
1.313
1.296
1.273
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Table 3 Singularity for edge crack whose tip touches the interface.

A

0.8

@
0.0

0.4

0.4
0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

0.7321
0.7394
0.7438
0.7456
0.7450

0.6449
0.6507
0.6633
0.8529
0.6495

0.5949
0.5946
0.5912
0.5843
0.5734

0.5567
0.5533
0.5467
0.3364
0.5213

0.5230
0.5136
0.5000
0.4812
0.4561

0.5000
0.4881
0.4718
0.4498
0.4196

0.4682
0.4496
0.4249
0.3913
0.3435

0.4523
0.4318
0.4049
0.3687
0.3173

0.4173
0.3887
0.3504
0.2963
0.2114
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Table 4 Stress intensity factors for edge crack whose tip touches the interface (tension

along neutral axis).

T K/a® /x(h1/2)" J

Q
nm/ln g | 08| 06| -04] -02] o00[ 02| 04| 06| 08
r 0.4 ] 42.29 | 64.73
0.3 ] 36.34 | 57.24 | 65.37 | 66.57
0.2 | 31.86 | 51.88 | 59.99 | 61.77 | 59.26 | 53.75

-0.1 | 28.41 | 48.00 | 56.27 | 58.63 | 56.83 | 52.00 | 44.82 | 35.58
0.1 | 0.0 | 25.70 | 45.26 | 53.86 | 56.87 | 55.76 | 51.48 | 44.67 | 35.59 | 23.71

0.1 52.70 | 56.49 | 568.14 | 52.38 | 45.77 | 36.57 | 24.27
0.2 58.45 | 55.26 | 48.70 | 39.02 { 25.72
0.3 55.06 | 44.28 | 28.90
0.4 36.76
I K/o® /x(hy/2)* N

Qa
{h,/h, g | 08] 06] 04 02] 00 02] 04[] o06] 08
i 0.4 | 6.209 | 6.483
-0.3 | 5.631 | 5.901 | 5.625 | 5.120
0.2 | 5.182 | 5.442 | 5.238 | 4.819 | 4.300 | 3.741
0.1 | 4.820 | 5.074 | 4.927 | 4.579 | 4.123 | 3.613 | 3.078 | 2.524
1 | 0.0 |4523|4775 | 4.679 | 4.393 | 3.993 | 3.526 | 3.020 | 2.487 | 1.918

0.1 4488 | 4.262 | 3.914 | 3.485 | 3.004 | 2.484 | 1.921

[ 0.2 ‘ 3.904 | 3.512 | 3.049 | 2.532 | 1.963

1 0.3 3.210 | 2.681 | 2.082

0.4 2.417

' K/o® /x(hy/2)* |
Q

m/ha| 8 | -08] 08] -04] -02] 00| 02] 04] 06 08
0.4 | 2.465 | 2.351
-0.3 | 2.286 | 2.189 | 2.064 | 1.931
-0.2 | 2.149 | 2.063 | 1.962 | 1.851 | 1.738 | 1.629

f -0.1 | 2.042 | 1.965 | 1.888 | 1.791 | 1.693 | 1.505 | 1.500 | 1.413
10 | 0.0 | 1958 | 1.800 | 1.825 | 1.750 | 1.666 | 1.577 | 1.489 | 1.405 | 1.326
0.1 1.790 | 1.732 | 1.662 | 1.582 | 1.499 | 1.416 | 1.5%

0.2 1.680 | 1.621 | 1542 | 1.458 | 1.375

0.3 1649 | 1.563 | 1471

H 0.4 1.726
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Table 5 Stress intensity factors for edge crack whose tip touches the interface (pure
bending).

r

K/omax vx(ha/2)*

|

ha/ha

a

-0.8

0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

0.1

0.4
03
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

12.59
10.71
9.280
8.185
7.279

20.29
17.87
16.13
14.86
13.94

21.27
19.47
18.20
17.38
16.93

22.67
20.99
19.87
19.22
19.03

21.25
20.33
19.90
19.98
20.73

20.56
19.85
19.61
19.90
20.94

18.56
18.46
18.87
20.02
22.56

16.35
16.33
16.74
17.81
20.14

12.51
12.77
13.50
15.10
19.11

K/omuxv/7(ha [2)*

ha/ha

a

-0.8

-0.6

-04

-0.2

0.0

0.2

0.4

0.6

0.8

0.4
0.3
-0.2
0.1
0.0
0.1
0.2
0.3
0.4

1.739
1.538
1.379
1.247
114

2478
2.215
2.004
1.830
1.683

2.536
2.324
2.147
1.999

1.874

2.606
2.417
2.260
2.130
2.024

2.353
2.223
2.116
2.033
1.979

2.182
2.077
1.994
1.932
1.900

1.856
1.790
1.745
1727
1.758

1.572
1.522
1.487
1.475
1.505

1.188
1.160
1.148
1.166
1.266

K/omus v (ha/2)*

L]

ha/ha

a

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

10

-0.4
0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

2.095
1.987
1.815
1.719
1.643

2.077
1.927
1.810
1.718
1.647

1.841
1.744
1.663
1.611
1.573

1.734
1.656
1.596
1.554
1.531

1.561
1.5156
1.485
1.474
1.489

1.468
1431
1.409
1.406
1432

1.350
1334
1.336
1.364
1447

1.274
1.260
1.283
1.292
1.372

1191
1.194
1.220
1.293
1.497
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Fig. 1 Crack configurations for the bimaterial strip.
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